Imperial College London

Computational Privacy

The limits of anonymization and the future of privacy

by Ali Farzanehfar

Mark Whol Cent MIT Flou	n Outfitters et Basket e Food ral Bakkery RecSport r Cafe er Cafe	5	customerIC 7abcla23 7abcla23 3092fc10 7abcla23 4c7af72a 89c0829c 7abcla23)	date 09/23 09/23 09/23 09/23 09/24		amoun \$97.3 \$15.1 \$43.7 \$4.33 \$12.2 \$3.66 \$35.8	0 3 8 9		
westcheste budget tru	klawyersite er.gov uck rental ansion house		QueryTime 2006-03-03 2006-03-18 2006-03-20 2006-03-20 2006-04-03	07:13 08:03 08:03 03:55 18:23 017:14	3:09 5:57 7:07 4:01	ItemR	ank			chestergov.com yboat.com
action call call	direction in out	user2 sW4aF 5f0jX	X 2014		07:13 07:53	:30	antID 210 34		lat 42.366944 42.366944	

1809

2014-03-02 08:22:30

AnonID

142

142

142

1326

1326

1326

user1

H6ycJQIv H6ycJQIv

H6ycJQIv

text

in

5f0jX5G

42.386722 -71.138778

Data is useful but sensitive

datascience@berkeley

Online Data Science Degree / Blog

f y a in o

Admissions

How Cupid is Counting on Data Find the Perfect Match

February 08, 2016 by datascience@berkeley Staff

Sections

OTATORING

Forbes

47,635 views | Jan 20, 2016, 02:31am

How Big Data Is Disrupting Law Firms And The Legal **Profession**

Bernard Marr Contributor ①

There's a ton of information out the put it to work.

Report foreca

VENDORS

How Big Data Enabled Spotify To Change The Music Industry

How the NFL uses Big Data in practice

Shop	customerID	date	amount
Urban Outfitters	7abc1a23	09/23	\$97.30
Market Basket	7abc1a23	09/23	\$15.13
Whole Food	3092fc10	09/23	\$43.78
Central Bakkeryn C	TMAA3 &	orati	\$ 33
MIT RecSport	4c7af72a	09/23	\$12.29
Flour Cafe	89c0829c	09/24	\$3.66
Border Cafe	7abc1a23	09/24	\$35.81

AnonID	Query	QueryTime	ItemRank	ClickURL
142	rentdirect.com	2006-03-01 07:17:12		
142	www.newyorklawyersite.com	2006-03-18 08:03:09		
142	westchester.gov	2006-03-20-03:55:57	<u>1</u>	http://www.westchestergov.com
1326	westchester.gov budget truck rentanter	2.55 (5. 2 (3.8: 7.6)	iets	
1326	holiday mansion houseboat	2006-03-29 17:14:01	5	http://www.everyboat.com
1326	back to the future	2006-04-01 17:59:28		

user1	action	direction	user2	timestamp	antID	lat	long
H6ycJQIv	call	in	sW4aFX	2014-03-02 07:13:30	210	42.366944	-71.083611
H6ycJQIv	call	out OC		2014-03-02 07:13:30 2014-03-02 08:22:30	etwo	44. 366944	-71.083611
H6ycJQIv	text	in	5f0jX5G	2014-03-02 08:22:30	1809	42.386722	-71.138778

Anonymization: The standard tool for protecting privacy

Example: yearly income of the rich

Name	DOB	Gender	<pre>Income [\$/yr]</pre>
Katerine Enter	01/193	6 F	100,000
Luella Perret	04/196	0 F	35,678
Dong Rice	12/198	2 M	45,000
Carl Stiner	03/198	2 M	325,000
Ken Alamo	05/198	8 M	125,000
Yulanda Parikh	11/196	0 F	23,459
Janee Lundell	09/193	5 F	75,008

Example: yearly income of the rich

Name	DOB Ge	nder	<pre>Income [\$/yr]</pre>
∨F0m6JGQ	01/1936	F	100,000
p0nYRG91	04/1960	F	35,678
LgRLdjaA	12/1982	М	45,000
uH4sUWLU	03/1982	М	325,000
zfyv9PRY	05/1988	М	125,000
qbu8Us1P	11/1960	F	23,459
SrQ4sonIn	09/1935	F	75,008

Example: yearly income of the rich

Name	DOB	Gender	<pre>Income [\$/yr]</pre>
∨F0m6JGQ	1930	F	100,000
p0nYRG91	1960	F	35,678
LgRLdjaA	1980	М	45,000
uH4sUWLU	1980	М	325,000
zfyv9PRY	1980	М	125,000
qbu8Us1P	1960	F	23,459
SrQ4sonIn	1930	F	75,008

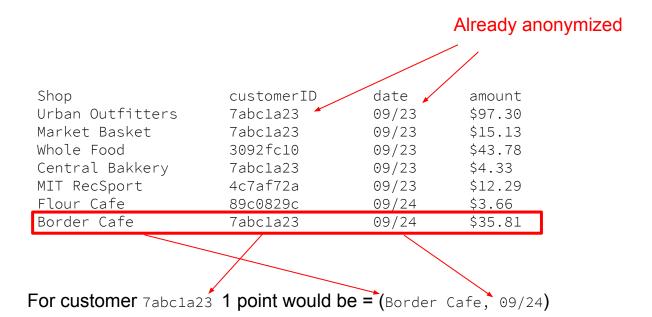
Data protection regulation does not apply to anonymous data

Limits of anonymization

Fingerprints: 12 points are needed to identify you

- Fingerprints are natural identifiers
- To identify someone 12 points are required
- "Points" are distances between ridges
- Parallel to "points" in modern high dimensional data?

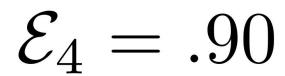
Example: Points in credit card data = (shop, date)

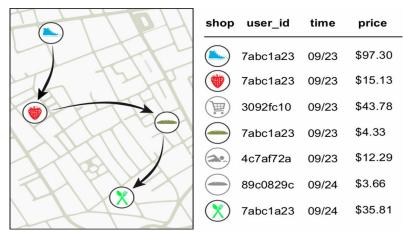


How many points are needed to uniquely identify a person in a big location data set?

4 points: 90% of individuals are uniquely identifiable

- Credit card data from an OECD* country
- Data containing histories of 1.1M people
- Collected over 3 months
- Points = (shop, date)
- With 4 (randomly picked) points, 90% of traces are uniquely identifiable
- Then the whole trace is available
- Study^a performed on anonymized data





So where can we find these 4 points?

^{*} The Organisation for Economic Co-operation and Development

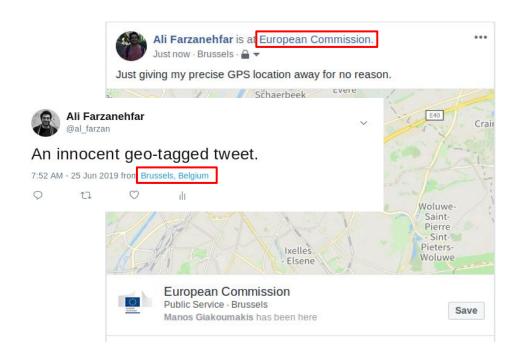
⁶ de Montjoye Y.-A., Radaelli L., Singh V. K., Pentland A. S., Unique in the shopping mall: On the reidentifiability of credit card metadata. Science 347 (6221), 536-539. (2015).

Auxiliary information (points) are publicly available

We leave these points online constantly

 In a targeted attack you might know some information already (e.g. place of work / home)

 You could obtain a few points through more traditional means (e.g. by following people)



List of previous successful re-identification instances

- Anonymous movie ratings: Narayanan, A., Shmatikov, V., 2008. Robust De-anonymization of Large Sparse Datasets. IEEE, pp. 111–125. https://doi.org/10.1109/SP.2008.33
- Anonymous apps on our phones: Achara, J.P., Acs, G., Castelluccia, C., 2015. On the Unicity of Smartphone Applications. ACM Press, pp. 27–36. https://doi.org/10.1145/2808138.2808146
- Anonymous location data
 - From credit cards: de Montjoye, Y.-A., Radaelli, L., Singh, V.K., Pentland, A.S., 2015. Unique in the shopping mall: On the reidentifiability of credit card metadata. Science 347, 536–539. https://doi.org/10.1126/science.1256297
 - From mobile phones: de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M., Blondel, V.D., 2013. Unique in the Crowd: The privacy bounds of human mobility. Scientific Reports 3. https://doi.org/10.1038/srep01376
 - From public transport: Lavrenovs, A., Podins, K., 2016. Privacy violations in Riga open data public transport system. IEEE, pp. 1–6. https://doi.org/10.1109/AIEEE.2016.7821808
 - From GPS: Naini, F.M., Unnikrishnan, J., Thiran, P., Vetterli, M., 2016. Where You Are Is Who You Are: User Identification by Matching Statistics. IEEE Transactions on Information Forensics and Security 11, 358–372. https://doi.org/10.1109/TIFS.2015.2498131
 - From taxi rides: Pandurangan, V., 2014. On Taxis and rainbows.
- Anonymous medical data: Sweeney, L., 2002. K-Anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 557–570. https://doi.org/10.1142/S0218488502001648
- Many more . . .

Anonymization does not always work for privacy

• New data sets are often high dimensional (thousands of points per person)

This often means that each person is very unique in the data set

• By knowing only a few points, a person can become uniquely identifiable

Anonymization is less and less effective against this type of attack

What can be done with re-identified data

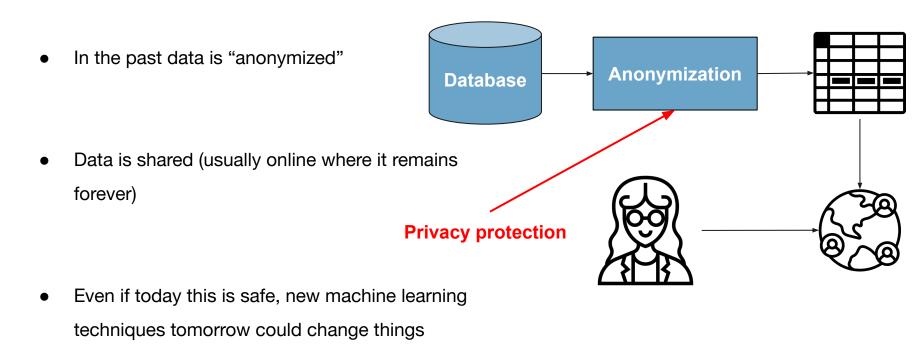
Sensitive attributes: Discovery from anonymous data

- Predicting personality traits (e.g. extraversion, openness, etc.) from mobile phone data
 - de Montjoye, Y. A., Quoidbach, J., Robic, F., & Pentland, A. S. (2013). Predicting personality using novel mobile phone-based metrics. In Social Computing, Behavioral-Cultural Modeling and Prediction (pp. 48-55). Springer
- Gender (78% accuracy) and age (60% accuracy) inferred from mobile phone metadata
 - Felbo, B., Sundsøy, P., Pentland, Á. 'Sandy,' Lehmann, S., Montjoye, Y.-A. de, 2017. Modeling the Temporal Nature of Human Behavior for Demographics Prediction, in: Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science. Presented at the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Cham, pp. 140–152. https://doi.org/10.1007/978-3-319-71273-4 12
- Predicting income levels (0.81 AUC) from mobile phone metadata
 - o Blumenstock, J., Cadamuro, G., On, R., 2015. Predicting poverty and wealth from mobile phone metadata. Science 350, 1073–1076. https://doi.org/10.1126/science.aac4420
- Discovery of political beliefs of people from their Netflix history
 - Narayanan, A., Shmatikov, V., 2008. Robust De-anonymization of Large Sparse Datasets. IEEE, pp. 111–125. https://doi.org/10.1109/SP.2008.33
- Lawsuit against Netflix by in-the-closet lesbian mother for fear of outing (Netflix settled)
 - NetFlix Cancels Recommendation Contest After Privacy Lawsuit [WWW Document], n.d. . WIRED. URL https://www.wired.com/2010/03/netflix-cancels-contest/ (accessed 6.27.18).
- Many more . . .

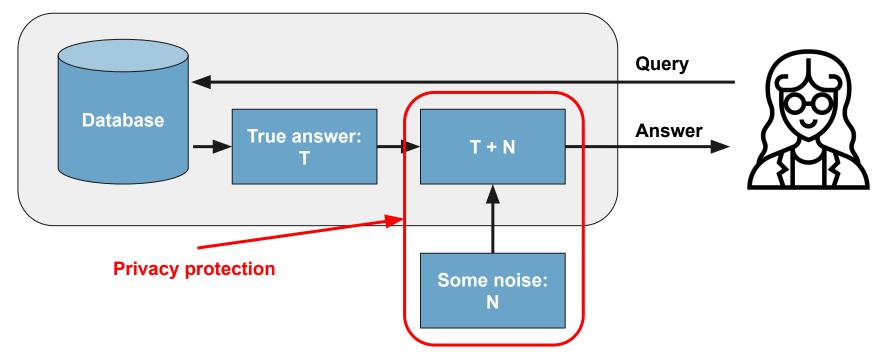
The solution:

Privacy-Enhancing Technologies (PETs)

Publishing a data set is forever: we cannot unpublish data



A solution: query based systems



OPAL

What is OPAL?

- OPAL (Open Algorithms) is a query based system
- Currently deployed in Senegal
- Uses location data of close to 10M people
- Can be used for many good applications
 (e.g. national statistics)

Privacy of OPAL

- Set of queries is limited
- The queries are designed to be privacy preserving
- Queries are logged
- The code is open source
- Many other protective layers ...

Key takeaways

Data protection regulation does not apply to anonymized data

Anonymization is ineffective for modern big data sets -> rethink policy

Privacy enhancing technologies are the future of privacy protection -> invest

Thanks!

Yves-Alexandre de Montjoye Head of group

Thibaut Leinart Postdoc

Ali Farzanehfar PhD student

Andrea Gadotti PhD student

Luc Rocher PhD student

Florimond Houssiau PhD student

Arnaud Tournier PhD student

Ana-Maria Cretu PhD student

Shubham Jain PhD student

Stefano Marronne Visiting PhD student

Ali Farzanehfar - ali.farzanehfar@imperial.ac.uk

