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Shop customerID date amount

Urban Outfitters 7abcla23 09/23 $97.30

Market Basket 7abcla23 09/23 $15.13

Whole Food 3092fcl10 09/23 $43.78

Central Bakkery 7abcla23 09/23 $4.33

MIT RecSport 4c7af72a 09/23 $12.29

Flour Cafe 89c0829c 09/24 $3.66

Border Cafe 7abcla23 09/24 $35.81
AnonID Query QueryTime ItemRank  ClickURL
142 rentdirect.com 2006-03-01 07:17:12
142 www . newyorklawyersite.com 2006-03-18 08:03:09
142 westchester.gov 2006-03-20 03:55:57 1 http://www.westchestergov.com
1326 budget truck rental 2006-03-24 18:27:07
1326 holiday mansion houseboat 2006-03-29 17:14:01 5 http://www.everyboat.com
1326 back to the future 2006-04-01 17:59:28
userl action direction wuser2 timestamp antID lat long
HoycJQIv call in sW4aFX 2014-03-02 07:13:30 210 42 .366944 -71.083611
H6ycJQIv call out 5f0jX5G 2014-03-02 07:53:30 34 42.366944 -71.083611
HoycJQIv text in 5f0jX5G 2014-03-02 08:22:30 1809 42.386722 -71.138778



Data is useful but sensitive
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Shop customerID date amount

Urban Outfitters 7abcla23 09/23 $97.30
Market Basket 7abcla23 09/23 $15.13
Whole Food 3092fcl10 09/23 $43 78
Central Bakkerln & Iq ?
MIT RecSport cqmgz S; I
Flour Cafe 89c0829c 09/24 $3.66
Border Cafe 7abcla23 09/24 $35.81
AnonID Query QueryTime ITtemRank  ClickURL
142 rentdirect.com 2006-03-01 07:17:12
142 www . newyorklawyersite.com 2006-03-18 08:03:09
142 westchester.gov 2@06 03-2 5 http://www.westchestergov.com
1326 budget truck remlanter g b
1326 holiday mansion houseboat 2006- O3 29 17:14: Ol 5 http://www.everyboat.com
1326 back to the future 2006-04-01 17:59:28
userl action direction wuser2 timestamp antID lat long

H6ycJQIv  call 4aFX 14-03-02 0F: 366944 -71.083611
HEycJQIv  call Loca & m|aa 3cn 'EWO jR3€>‘6944 ~71.083611
180

H6ycJQIv text j SG 2014-03-02 08:22:30 42.386722 -71.138778



Anonymization:
The standard tool for protecting privacy



Example: yearly income of the rich

Name

Katerine Enter
Luella Perret
Dong Rice

Carl Stiner
Ken Alamo
Yulanda Parikh
Janee Lundell

DOB Gender

01/1936
04/1960
12/1982
03/1982
05/1988
11/1960
09/1935

F

m T < < < T

Income [$/yr]

100,000
35,678
45,000
325,000
125,000
23,459
75,008



Example: yearly income of the rich

Income [$/yr]

Name DOB Gender

vFOmM6JGQ ©1/1936 F 100,000
pONYRGI1 04/1960 F 35,678

LgRLdjaA 12/1982 M 45,000

uH4sUWLU ©3/1982 M 325,000
zfyvIoPRY 05/1988 M 125,000
gbu8Us1P 11/1960 F 23,459

SrQ4sonln 09/1935 F 75,008




Example: yearly income of the rich

Name
vFOM6JGQ
pPONYRGI1
LgRLdjaA
uH4sUWLU
zfyv9PRY
gbu8Us1P
SrQ4sonIn

DOB

1930
1960
1980
1980
1980
1960
1930

Gender
F

m T < < < T

Income [$/yr]
100,000
35,678
45,000
325,000
125,000
23,459
75,008

Data protection regulation does not apply to anonymous data
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Limits of anonymization



Fingerprints: 12 points are needed to identify you

Fingerprints are natural identifiers

To identify someone 12 points are required

“Points” are distances between ridges

Parallel to “points” in modern high dimensional
data?
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Example: Points in credit card data = (shop, date)

Already anonymized

Shop customerID date /////i;mount

Urban Outfitters Tabcla23 09/23 $97.30
Market Basket Tabcla23 09/23 $15.13
wWhole Food 3092fc10 09/23 $43.78
Central Bakkery Tabcla23 09/23 $4.33

MIT RecSport 4craf72a 09/23 $12.29
Flour Cafe 89c0829c 09 /24 $3.66

Border Cafe 7abcla23 09/24 $35.81

T N

For customer 7abc1a23 1 point would be = (Border Cafe, 09/24)

How many points are needed to uniquely identify a person in a big
location data set?



4 points: 90% of individuals are uniquely identifiable

Credit card data from an OECD* country

Data containing histories of 1.1M people @
Collected over 3 months 2
Points = (shop, date)

With 4 (randomly picked) points, 90% of
traces are uniquely identifiable

® =

S

/

Then the whole trace is available O

&4 = .90

Study” performed on anonymized data

So where can we find these 4 points?

* The Organisation for Economic Co-operation and Development

shop user_id time price
@ 7abc1a23 09/23  $97.30
7abcla23 09/23 $15.13
(&) 3092fc10 09/23 $43.78
@ 7abc1a23 09/23 $4.33
@) 4c7af72a 09/23 $12.29
(==) 89c0829c 09/24 $3.66
O 7abc1a23 09/24 $35.81
14

“ de Montjoye Y.-A., Radaelli L., Singh V. K., Pentland A. S., Unique in the shopping mall: On the reidentifiability of credit card metadata. Science 347 (6221), 536-539. (2015).



Auxiliary information (points) are publicly available

Justnow - Brussels - @@ «

“ Ali Farzanehfar is c[l European Commission l

We leave these points online constantly

Just giving my precise GPS location away for no reason.

ﬁ Ali Farzanehfar [E0] .
p' @al_farzan e rall

In a targeted attack you might know some An innocent geo-tagged tweet.

information already 7:52 AM - 25 Jun 2019 fron{ B
(e.g. place of work / home) ) Q

Ixelles
You could obtain a few points through more
traditional means (e.g. by following people) Eiifciean Cormission

Public Service - Brussels
= ey Save
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List of previous successful re-identification instances

. Anonymous movie ratings: Narayanan, A., Shmatikov, V., 2008. Robust De-anonymization of Large Sparse Datasets. IEEE, pp. 111-125.
https://doi.org/10.1109/SP.2008.33

° Anonymous apps on our phones: Achara, J.P., Acs, G., Castelluccia, C., 2015. On the Unicity of Smartphone Applications. ACM Press, pp. 27-36.
https://doi.org/10.1145/2808138.2808146

° Anonymous location data

o From credit cards: de Montjoye, Y.-A., Radaelli, L., Singh, V.K., Pentland, A.S., 2015. Unique in the shopping mall: On the reidentifiability of credit card
metadata. Science 347, 536-539. https://doi.org/10.1126/science.1256297

o From mobile phones: de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M., Blondel, V.D., 2013. Unique in the Crowd: The privacy bounds of human
mobility. Scientific Reports 3. https://doi.org/10.1038/srep01376

o From public transport: Lavrenovs, A., Podins, K., 2016. Privacy violations in Riga open data public transport system. IEEE, pp. 1-6.
https://doi.org/10.1109/AIEEE.2016.7821808

o From GPS: Naini, F.M., Unnikrishnan, J., Thiran, P., Vetterli, M., 2016. Where You Are Is Who You Are: User Identification by Matching Statistics. IEEE
Transactions on Information Forensics and Security 11, 358—372. https://doi.org/10.1109/TIFS.2015.2498131

o From taxi rides: Pandurangan, V., 2014. On Taxis and rainbows.

Anonymous medical data: Sweeney, L., 2002. K-Anonymity:A model for protecting privacy. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 10, 557-570. https://doi.org/10.1142/S0218488502001648

° Many more. . ..
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https://doi.org/10.1109/TIFS.2015.2498131
https://doi.org/10.1142/S0218488502001648

Anonymization does not always work for privacy

e New data sets are often high dimensional (thousands of points per person)

e This often means that each person is very unique in the data set

e By knowing only a few points, a person can become uniquely identifiable

e Anonymization is less and less effective against this type of attack

17



What can be done with
re-identified data



Sensitive attributes: Discovery from anonymous data

Predicting personality traits (e.g. extraversion, openness, etc.) from mobile phone data
o de Montjoye, Y. A., Quoidbach, J., Robic, F., & Pentland, A. S. (2013). Predicting personality using novel mobile phone-based metrics. In Social Computing, Behavioral-Cultural Modeling and Prediction (pp.
48-55). Springer

e Gender (78% accuracy) and age (60% accuracy) inferred from mobile phone metadata

o Felbo, B., Sundsgy, P., Pentland, A. ‘Sandy,’ Lehmann, S., Montjoye, Y.-A. de, 2017. Modeling the Temporal Nature of Human Behavior for Demographics Prediction, in: Machine Learning and Knowledge
Discovery in Databases, Lecture Notes in Computer Science. Presented at the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Cham, pp. 140-152.
https:/doi.ora/10.1007/978-3-319-71273-4_12

e Predicting income levels (0.81 AUC) from mobile phone metadata
o Blumenstock, J., Cadamuro, G., On, R., 2015. Predicting poverty and wealth from mobile phone metadata. Science 350, 1073-1076. https://doi.org/10.1126/science.aac4420

e Discovery of political beliefs of people from their Netflix history

o Narayanan, A., Shmatikov, V., 2008. Robust De-anonymization of Large Sparse Datasets. IEEE, pp. 111-125. https://doi.org/10.1109/SP.2008.33

e Lawsuit against Netflix by in-the-closet lesbian mother for fear of outing (Netflix settled)

o NetFlix Cancels Recommendation Contest After Privacy Lawsuit [WWW Document], n.d. . WIRED. URL https://www.wired.com/2010/03/netflix-cancels-contest/ (accessed 6.27.18).

e Many more. ..
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https://doi.org/10.1007/978-3-319-71273-4_12
https://doi.org/10.1126/science.aac4420

The solution:

Privacy-Enhancing Technologies (PETSs)



Publishing a data set is forever: we cannot unpublish data

Database

e Inthe past data is “anonymized”

e Data is shared (usually online where it remains
forever)

Privacy protection

e Even if today this is safe, new machine learning

techniques tomorrow could change things

Anonymization

21



A solution: query based systems

-

-

«

Query

Database

True answer:

Privacy protection

Answer
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What is OPAL? Privacy of OPAL

e OPAL (Open Algorithms) is a query based

Set of queries is limited

system
e The queries are designed to be privacy
e  Currently deployed in Senegal preserving
e Uses location data of close to 10M people e  Queries are logged
e (Can be used for many good applications e The code is open source
(e.g. national statistics) e Many other protective layers ...
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Key takeaways

e Data protection regulation does not apply to anonymized data
e Anonymization is ineffective for modern big data sets -> rethink policy

e Privacy enhancing technologies are the future of privacy protection -> invest
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